Simple Multi-Attribute Rating Technique

Simple $_{\text {Multi- }}$ -

1 Identify the decision maker (or decision makers).
2 Identify the alternative courses of action.
3) Identify the attributes which are relevant to the decision.

4 Assign values to measure the alternatives of that attribute.
5 Determine a weight for each attribute.
6 For each alternative, take a weighted average of the values assigned to that alternative.
(7) Make a provisional decision.

8 Perform sensitivity analysis.

Step 1: Identify the Decision Maker

Step 2: Identify the Alternative Courses of Action

Step 3: Identify Relevant Attributes

Step 4: Assign Values

Step 4: Method One - Direct Rating

Start by ranking the alternatives from most preferred to least preferred. In this case, let's start with "image" and assume the following ranking:
(1) Addison Square
(2) Elton Street
(3) Filton Village
(4) Denver Street
(5) Gorton Square
(6) Bilton Village
(7) Carlisle Walk

Repeat for all attributes:

Rank on an interval scale of 100

	Office							
Attribute	A	B	C	D	E	F	G	
Closeness	100	20	80	70	40	0	60	
Visibility	60	80	70	50	60	0	100	
Image	100	10	0	30	90	70	20	
Size	75	30	0	55	100	0	50	
Comfort	0	100	10	30	60	80	50	
Car Parking	90	30	100	90	70	0	80	

Step 4: Method Two - Value Functions

Using the attribute "size," determine the optimal value. In this case, assume the owner likes large offices so he would assign the optimal value, i.e. $\overline{\text { }(1500)=100 \text {, to Elton Street }}$ as it has 1500 square feet. Similarly, $\mathbf{v}(400)=0$ as Carlisle has 400 square feet.

Determining the midpoint requires some subjectivity but assume that owner settles on $v(700)=50$. In order to plot this curve, you will need the quarter points. The owner selected the following quarter points (based on preference): $v(500)=25$ and $v(700)=75$.

Step 5: Determine Weights

Step 6: Take a Weighted Average

Step 7: Make a Provisional Decision

Step 8: Perform Sensitivity Analysis

Sensitivity

